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Natural convection in an infinite porous medium with 
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The phenomenon of buoyancy-induced convection in an infinite porous medium with a 
concentrated heat source is studied analytically. The transient and steady-state 
temperature distribution and flow pattern around the source are determined using a 
perturbation analysis in the Rayleigh number based on the heat generation rate at 
the source. The first-order transient solution derived in the paper is valid for Rayleigh 
numbers less than 10. The transient flow pattern consists of an expanding vortex ring 
situated in the horizontal plane containing the source. The steady-state solution, 
valid for Rayleigh numbers of the order of 20 or less, reveals an upward flow pattern 
which becomes very intense near the source. The upward flow extends throughout the 
medium. Both solutions show that as the Rayleigh number increases the region 
situated above the source is effectively heated by natural convection in addition to 
direct heat conduction from the source. 

1. Introduction 
Buoyancy-induced convection in fluid-saturated porous media has been the subject 

of many studies owing to its numerous and wide-ranging applications. For example, 
this class of phenomena is encountered in hydrology, petroleum geology, geophysics, 
thermal-insulation engineering and nuclear engineering. The object of this article is 
to analyse an important fundamental problem in porous-media free convection, 
namely the temperature field and ensuing flow pattern around a concentrated heat 
source suddenly embedded in an infinite fluid-saturated porous medium. In spite of 
its relevance to many practical situations, this phenomenon has not been analysed 
before. Most of the literature on buoyancy-induced convection in porous media, 
which, incidentally, is only thirty years old, deals primarily with phenomena where 
the heating or cooling is applied along the boundaries of the porous medium. For 
example, the Rayleigh-BBnard problem associated with heating a horizontal porous 
layer from below was studied by Horton & Rogers (1945), Lapwood (1948) and 
Wooding (1957). The end effects present when the horizontal layer is finite were 
investigated by Elder (1966a). 

Considerable work has been done on free convection in enclosures filled with a porous 
medium where heating and cooling is applied along the lateral (vertical) boundaries. 
The interest in this topic is motivated in part by the growing emphasis on effective 
fibrous and granular insulation systems. The flow in vertical cavities was studied by, 
among others, Schneider (1963), Chan, Ivey & Barry (1970), Bankvall (1974) and 
Burns, Chow & Tien (1977). The natural convection in a horizontal porous medium 
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subjected to an end-to-end temperature difference was investigated by Bejan & Tien 
(1978). The only work related to free convection caused by a point heat source in a 
saturated porous medium was done by Wooding (1963). Among a number of pheno- 
mena that he touched on was the steady-state high Rayleigh number behaviour of 
the flow around a point source. Relying on boundary-layer approximations analogous 
to the classical viscous theory, he showed that in the high Rayleigh number limit the 
flow and temperature fields a t  some distance above the source are described by a 
solution similar to  the solution for a laminar round jet derived by Schlichting (1933). 
A similar approach was later used by Minkowycz & Cheng (1976) in the study of high 
Rayleigh number convection about a vertical cylinder embedded in a porous medium. 
I n  a general study on transient free convection in a porous medium, Elder (19663) 
considered the evolution of a finite two-dimensional blob of hot fluid released from 
the solid base of a horizontal porous slab. 

The present article considers the convection generated in the vicinity of a point 
heat source which is continuous in time and is suddenly embedded in an infinite porous 
medium. Two aspects of this problem are of interest: the transient, time-dependent 
temperature and flow pattern around the source and the steady regime attained as 
time approaches infinity. Unlike Wooding (1963), this study considers the low Rayleigh 
number behaviour of the ensuing flow. As emphasized later in $ 5 ,  the study of the 
low Rayleigh number behaviour is more appropriate in view of the limitations 
associated with using the Darcy flow model. The present problem is related somewhat 
to the one solved by Morton (1960) for weak thermal vortex rings created by the 
sudden release of a finite amount of heat a t  a point in a still viscous fluid. For the 
problem treated in this article, the fluid flow is governed by Darcy’s law for flow 
through porous media and, since the point heat source is continuous in time, steady- 
state temperature and velocity fields are encountered. 

As a summary of what is presented below, the mathematical problem is formu- 
lated in $ 2 .  The transient flow and temperature patterns are derived analytically 
in $3.  A solution for the steady-state temperature and flow distributions around 
the source is presented in $ 4. Finally, in $ 5 we conclude the study by reviewing 
the asymptotic character of the solutions and the limitations of the Darcy flow 
model. 

2. Problem statement 
Consider the spherical polar co-ordinate system (r,  8,$) shown in figure 1. A point 

source of strength q (watts) is situated a t  the origin with the 8 = 0 axis pointing 
vertically upwards. Since the problem is symmetric in the angular direction 4 around 
the vertical axis, neither 4 nor the 4 velocity component w appears in the analysis. 
The fluid saturating the porous medium is Boussinesq-incompressible, its density p 
varying slightly as a result of temperature changes: 

in which P is the volumetric coefficient of thermal expansion, T the temperature and 
the subscript 0 indicates the properties of a reference state. 



Natural convection in an infinite porous medium 99 

FIGURE 1. Spherical polar co-ordinate system. 

The equations describing conservation of mass, momentum and energy in the 
medium are, respectively, 

a a 
ar ae - (r2u sin 0 )  + - (rv sin 0) = 0, 

where u, v, t ,  P ,  g, K ,  I(. and a stand for the radial and tangential velocity components, 
time, pressure, gravitational acceleration, medium permeability, viscosity and thermal 
diffusivity, respectively. I n  writing ( 2 ) - ( 4 )  we are modelling the porous medium as 
homogeneous. According to  this commonly used model, the thermal diffusivity u of 
the medium is equal to k/(pC,),  where k is the thermal conductivity of the saturated 
medium and pC, is the heat capacity of the fluid (see, for example, Elder 1966a). 
The momentum equations (3) are based on the assumption that Darcy’s law applies; 
i.e. as summarized by Muskat (1946,  p. 60))  the Reynolds number based on the fluid 
velocity and average pore diameter is alwayshss than one. 

As usual, the governing equations are simplified if u and v are replaced by appro- 
priately defining , a stream function @ which satisfies the continuity equations (2) 
identically : 
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Further, the pressure terms appearing in (3) are eliminated through cross-differen- 
tiation. The momentum and energy equations become 

where v is the kinematic viscosity p/p. 

variables 

The resulting equations for the temperature 0 and the stream function Y are 

Finally, (6) and (7) are put in a non-dimensional form by defining a new set of 

(8) T = ta/K,  R = r / K t ,  0 = (T - To) kK*/q, Y = @/(aK*).  

where Ra is a Rayleigh number based on the source strength q and the permeability 
K of the medium: 

Ra = (/3g/av)qK. 

Equations (9) and (10) are to be solved subject to the initial conditions 

(11 )  

u=O,  v = O ,  T = T o  a t  t = 0 ,  (12) 

(13) 

aulat?, V ,  aT/M = o at e = 0, T .  (14) 

which are valid throughout the medium except at the origin. The boundary conditions 
are 

u+O, v+O, T+T0 as r+m, 

Owing to the concentrated heat source, the origin is a singular point for both tem- 
perature and velocity. Consequently, u, v and T blow up as 1/r  in the limit r + 0. For 
the temperature, this behaviour is demonstrated by a heat balance over a spherical 
surface of radius zero containing the origin: 

3. The transient state 
An analytical solution to the transient natural convection problem stated in the 

preceding section is possible in the limit of small Rayleigh numbers (Ra+O). The 
solution is found by means of a standard perturbation analysis which assumes power- 
series expressions in Ra for both @ and Y: 

0 = O0+RaO,+Ra20,+ ..., (16) 

Y = Yo + Ra Y, + Ra2Y2 + . . . . (17) 

The functions and Yi,  with i = 0, 1, 2 . . . , depend on r ,  R and 0 and are found by 
substituting (16) and (17) back into (9) and (10) and solving the equations obtained 
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by collecting terms containing the same power of Ra. This procedure is straight- 
forward, therefore only the final results are presented. 

The zeroth-order functions 0, and Yo correspond to the state of pure conduction 
around a continuous point source in a uniformly conducting medium. Since a t  Ra = 0 
there is no fluid motion we can take Yo = 0. The transient temperature distribution in 
the medium is given by Carslaw & Jaeger (1959, p. 261) as 

0, = 1 erfc ($) , 
4nR 

showing that for r > 0 the temperature a t  the origin is infinite, increasing as 1/R as 
R approaches zero. 

The function Y, is obtained from (9) in combination with the functions Yo and 0, 
derived already, Separation of variables is achieved by setting 

Yl = (74/277) sin2Bf(q), (19) 

(20) 

where q = R/(27+). The function f ( 7 )  satisfies the ordinary differential equation 

q2j” - 2 j  = - (2/nt) q2exp ( - 72) - q erfc q. 

Equation (20) has the general solution 

where 

C 1  7 1 1 f = - + c2 q2 +- erfc 7 +- erfq - - exp ( - q2) ,  411 2nt 7 2 

erfq = - ,‘6 fo” exp ( - x 2 )  dx, erfc 7 = 1 - erf q. 

Applying the R -+ co boundary condition ( 1  3), we find c2 = 0. Since in the limit R -+ 0 
the velocities u and v increase as 1/R, we find upon examining ( 5 )  that  in this limit Y 
must be proportional to R (or r), hence c1 = 0. We conclude that 

1 2 
7 nt 

1 Y - --+sin28 2qerfcq+-erfq--exp(-q2) ’- 877 
A set of streamlines corresponding to equal increments of Y J T ~  is shown in figure 2. 

The flow pattern at small Rayleigh numbers consists of a circular vortex whose radius 
increases in time as 79. The centre of this vortex is located a t  7 = 0.881 in the horizontal 
plane containing the source. Near the origin the streamlines come close together, 
illustrating the faet that  the velocity is infinite a t  the source. The same effect is shown 
in greater detail by the Ra + 0 streamlines in figure 5 ,  which depicts the steady-state 
(r -+ co) flow pattern. As 7 increases indefinitely, the flow pattern present near the 
origin spreads outwards, filling the entire space. 

An equation for the first convective correction to the temperature field is provided 
by (10) in association with (18) and (22). Writing 0, = cosOF(q)/~*, (10) yields an 
ordinary differential equation for F ( 7 ) :  

7 2 ~ ”  + 2(73+7) F’ + 2(72- 1) F 

1 2 
7 nt - erfc 7 + - exp ( - q2) 27 erfc q +- erf q - - exp ( - q2)  v* 

2 

The general solution to  this equation can be T i t t e n  as 
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FIGURE 2. Transient natural convection pattern around point heat source; 
the lines correspond to equal increments of Y1/7t. 

where F,(q) is the particular solution which satisfies (23). The first part of (24), con- 
taining the two constants c3 and c4, represents the general solution to  the homogeneous 
form of (23); the homogeneous part of the solution was derived by using the general 
method of Frobenius. Applying the 7 --f 0 and 7 --f 03 boundary conditions to expression 
(24), i.e. conditions (15) and (13), we conclude that the constants c3 and c4 must both 
be zero. Therefore the solution for 0, is proportional to the particular solution q,(q), 
or 0, = cosdF,(?j)/d. We were unable to guess a closed-form expression for Fp(7) in 
the way in which we found expression (21) for f. Instead, we show here a series expan- 
sion for F,(y) valid in the important region near the source (7 --f 0 ) ,  i.e. the volume 
where the temperature field is affected most visibly by the source. Noting that Fp 
and 0, behave as 7-1 when 7 and R approach zero, we assume the series form 

m 
Fp = Anyn. 

n=-1  

The coefficients A ,  are easily identified by also expressing the right-hand side of (23) 
as a power series in 9 < 1 and collecting terms containing the same power of 7.  The 
final expression for 0, is 
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FIGURE 3. Radial dependence of the first-order convective correction 
to the transient temperature distribution. 

The 7 dependence of the function 0, is shown in figure 3. I n  the limit 7 + 0 the 
first-order correction to the temperature field increases as 1/11. Away from the source, 
0, drops more rapidly than 1/11. This behaviour is to be expected since for 7 2 1 the 
presence of the source is felt only marginally. The power-series expression (25) is a 
very good description of 0, in the spherical region 0 < 7 < 1 surrounding the source. 
At 11 = 1, the 79 term contributes only 0.82 % of the total estimate for 0,. As might 
have been expected, the O(Ra) correction 0, to the temperature field amounts to an 
increase in temperature throughout the upper half-space (0 < 8 < &r) coupled with 
an equal and antipodal decrease in temperature in the lower half-space. 

4. The steady state 
As shown by the derivation of 0, and Y, in the preceding section, the perturbation 

analysis of the transient problem is laborious and not well suited to  be carried out 
beyond the first-order convective effect on the flow and temperature field. The 
analysis is somewhat simpler in the steady-state limit of this problem (7 --fa). In  this 
limit the number of variables is reduced from three, 7, 6 and 7 or 7, 8 and R, to only 
two, 8 and R. 

It is known that in the steady state the temperature around a continuous point 
source embedded in an infinite conducting medium with no convection stabilizes to a 
spherically symmetrical distribution in which the temperature decreases as 1/R at 
points located further and further away from the source (see, for example, (18) in the 
limit ?+a). I n  this section we are concerned with the distortion imposed on the 
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FIGURE 4. Steady-state temperature distribution; the lines represent 
the (47rR *) 0 = 1 isotherm for increasing values of Ra. 

otherwise symmetrical distribution by the presence of convection heat transfer. We 
should expect that for a given Rayleigh number the region situated above the source 
will be warmer than the lower region since, in addition to direct conduction, it is also 
warmed by the upward flow engulfing the source. 

The method for determining the functions Oi and Yi making up the perturbation 
solution (1 6)  and (1 7 )  is identical to the procedure described previously for the transient 
problem. For brevity, we show only the final expressions for O and Y with Ra terms 
up to the third power: 

cos O(47 cos20 - 30) Ra3 + . . . , 1 cos 2e ~~2 + ~ 

5 
cosORa+- 

768n2 55296n3 

(8 cos4O - 3) Ra3 + . . . sin26Ra+-sin8sin28Ra2-- 
1 5 

24n 1 8 4 3 2 ~ ~  

The temperature distribution (26) is illustrated in figure 4 by the temperature contour 
0 = 1/4nR*, where R* is a given radial distance. Increasing the Rayleigh number 
shifts the warm region upwards, although the temperature remains infinite at  the 
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FIGURE 5 .  Steady-state flow pattern; the streamlines correspond 
to constant increments of 8nY/(RaR*). 

origin. Figure 5 shows the steady-state flow pattern and its distortion as the Rayleigh 
number increases. The curves correspond to equal increments of the stream function 
8nY/(RaR*), where R* is again a fixed radial distance from the source. The stream- 
lines show that as Ra increases the warmer region moves upwards. Consequently the 
fluid accelerates upwards in planes situated above the horizontal plane containing the 
source. 
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5. Concluding remarks 
We have presented an asymptotic solution for the flow and temperature field around 

a concentrated heat source embedded in an infinite saturated porous medium. The 
solution was derived by performing a perturbation analysis in the Rayleigh number. 
The transient solution was carried out up to  the first-order convective correction to 
the temperature and velocity field. As a result, it gives a reasonably accurate de- 
scription as long as the Rayleigh number is of the order of 10 or less. The steady-state 
solution (26) and (27) was carried up to the third-order convective correction and is 
approximately valid for Rayleigh numbers of the order of 20 or less. 

The problem analysed in this article models the situation arising when a small but 
finite volume inside a much larger fluid-saturated porous space is suddenly heated. 
The analysis was greatly simplified by considering the heat source to be concentrated 
at one point in an infinite medium. Consequently, the solutions for the temperature 
and flow field break down at the source, where the temperature and fhe fluid velocity 
blow up. I n  particular, the Darcy flow model ceases to be valid when the fluid velocity 
U = (u2+w2)& exceeds a critical value. Muskat (1946, p. 60) showed that when the 
Reynolds number based on U and the pore diameter D is approximately greater than 
one, 

UDIv 2 1, (28) 

fluid inertial effect's begin to be felt and equations (3) are no longer valid. However, 
in our case the region around the source in which the Darcy flow model breaks down 
ought to be small since the present study was carried out in the weak convection 
(small velocity) limit Ra -+ 0. The limitation expressed by (28) is considerably more 
severe in the case of the Ra + 00 boundary-layer regime analysed by Wooding (1963) 
for a point heat source and Minkowycz & Cheng (1976) for a vertical heated cylinder 
embedded in a saturated porous medium. 
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